Ion-Molecule Complexes in 1,2 Alkyl Shifts

Andrea Gappa, Ekkehard Herpers, Roland Herrmann, Volker Hülsewede, Wilhelm Kappert, Matthias Klar, and Wolfgang Kirmse*

Contribution from the Fakultät für Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany

Received July 18, 1995°

Abstract

The internal return of neutral leaving groups was studied in rearrangements of polycyclic systems (2norpinyl $\rightarrow 2$-norbornyl, endo- \rightarrow exo-tricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-yl, bicyclo[3.2.0]hept-2-yl \rightarrow 7-norbornyl, and 4-protoadamantyl $\rightarrow 2$-adamantyl). Acid catalysis was applied to ${ }^{18} \mathrm{O}$-labeled alcohols in aqueous organic solvents, to alcohols in methanol, and to ethers $\mathrm{R}-\mathrm{O}-\mathrm{R}^{\prime}$ in alcohols $\mathrm{R}^{\prime \prime}-\mathrm{OH}$. The leaving group was found to attack the migration origin in competition with solvent molecules. Return:exchange ratios were obtained from product distributions, either directly or by kinetic simulation (in cases of partial exchange prior to rearrangement). If departure and return of the leaving group occur on the same side of the carbon framework, return:exchange ratios ranging from 1 to 11.5 were observed. Less internal return was found for bridged than for open carbocations. Migration of the departing molecule to the opposite face (exo \rightleftharpoons endo) or to a β carbon is a minor process (return:exchange \sim 0.1), in accordance with previous reports on inverting displacements and allylic 1,3 shifts. These data are rationalized in terms of short-lived ion-molecule (ion-dipole) complexes whose collapse competes with ligand exchange.

Introduction

The concept of ion pairs in nucleophilic substitution, introduced by Winstein, ${ }^{1}$ is now generally accepted. ${ }^{2}$ Contact (intimate) as well as solvent-separated ion pairs has been invoked to explain the products, stereochemistry, and kinetics of solvolysis reactions. Much less attention has been directed to ion-molecule complexes which may intervene in the heterolysis of substrates with neutral leaving groups, particularly in acid-catalyzed reactions of alcohols and ethers, eq 1. If the complex $\left[\mathrm{R}^{+} \mathrm{OH}_{2}\right.$] lives long enough for reorganization of the carbocation to occur ($\mathrm{R}^{+} \rightarrow \mathrm{R}^{\prime+}$), the product of recombination, $\mathrm{R}^{\prime}-\mathrm{OH}$, will be formed in addition to the solvolysis products, $\mathrm{R}-\mathrm{OS}$ and $\mathrm{R}^{\prime}-\mathrm{OS}(\mathrm{SOH}=$ solvent $)$.

In a pioneering study, Goering determined the rate of oxygen exchange associated with the acid-catalyzed racemization and rearrangement of (S)-1-phenylprop-2-en-1-ol (1). ${ }^{3}$ His data show that about 4\% of the 3-phenylprop-2-en-1-ol (2) and 22

[^0]$\pm 8 \%$ of the racemic 1 are produced without oxygen exchange.

Experiments with ${ }^{18} \mathrm{O}$-labeled 5-methylcyclohex-2-en-1-ols revealed that in the cis isomer 3 most of the racemization is intramolecular, i.e. with return of ${ }^{18} \mathrm{OH}_{2}$ to the allylic position. In the trans isomer 4, interconversion of the enantiomers is associated with predominant exchange and cis \rightleftharpoons trans isomerization $(3 \rightleftharpoons 4)$ results in complete exchange. ${ }^{4}$ These findings indicate that the ion-molecule complex derived from 3 is sterically protected against exchange with the solvent.

Partial return of the neutral leaving group has also been observed with 2 -methoxy-1-isopropylideneindan (5a) whose isomerization ($\rightarrow \mathbf{6 a}$) is 11 times slower than acid-catalyzed hydrolysis ($\rightarrow \mathbf{5 b}+\mathbf{6 b}$). ${ }^{5}$ Under analogous conditions, the more extended rearrangement of 7 afforded exclusively the

[^1]
alcohol 8. ${ }^{6}$

Return of the departing water to the opposite face of a carbocation has also been observed (cf. $1 \rightarrow$ ent-1). For both 1 -phenylethanol ${ }^{7}$ and 1 -phenylpropanol ${ }^{8}$ the rate of oxygen exchange is slower than the rate of racemization. For 1-phenylbutanol ${ }^{8}$ and 1-phenyl-1-methoxyethane, ${ }^{9}$ on the other hand, k_{rac} was found to equal $k_{\text {ex }}$. Ion-dipole pairs are likely to intervene in various elimination reactions ${ }^{10.11}$ and explain the unusual reactivity of certain metastable ions in mass spectrometry. ${ }^{12}$

The ion-molecule recombinations cited above may be classified as 1,1 (to the same carbon) or 1,3 (to an allylic position). To our knowledge, the return of neutral leaving groups to neighboring carbon atoms $(1,2)$ has not been reported in the literature. Our interest in 1,2 alkyl shifts led us to explore the role of ion-molecule complexes in Wagner-Meerwein rearrangements. Most conclusive results can be anticipated if the rearrangements are irreversible and the products ionize less readily than the substrates. In order to meet these conditions, we made use of strained ring systems; major sections of this paper refer to norpinyl \rightarrow norbornyl and protoadamantyl \rightarrow adamantyl rearrangements.

Results

2-Norpinyl \rightarrow 2-Norbornyl Rearrangements. 2-Norpinyl (bicyclo[3.1.1]hept-2-yl) substrates 9 ($\mathrm{X}=\mathrm{ODNB}, \mathrm{N}_{2}{ }^{+}$) are known to solvolyze with formation of endo- and exo-2-norbornyl products (11, 14). ${ }^{13}$ The fraction of endo products 11 increases with the nucleophilicity of the reactant Y^{-}, i.e. trapping of an endo-selective intermediate $\mathbf{1 0}$ competes with rearrangement to the exo-selective, achiral 2-norbornyl cation 15. Nucleophilic capture of $\mathbf{1 0}$ gives mainly 11 , owing to unsymmetrical distribution of charge and to product stability. As a rule, only traces of $\mathbf{1 2}$ are found in solvolyses of 9 , exceptions being due to inverting displacement $\left(k_{\mathrm{s}}\right)$ (Scheme 1). High-level ab initio calculations confirm the bridged structure 10 of the norpinyl

[^2]
Scheme 1

cation which is separated from 15 by a barrier of only $1.2 \mathrm{kcal} /$ mol. ${ }^{14}$ The "classical" 2-norbornyl cation 13 represents the transition state, rather than an intermediate, on the reaction path from 10 to 15 .

In accordance with Scheme 1, the acid-catalyzed rearrangement of bicyclo[3.1.1] heptan-2-ol (16) in aqueous dioxane afforded bicyclo[2.2.1]heptan-endo- and exo-2-ol (17:18 = 47: 53). Exchange of bicyclo[3.1.1]heptan-2-one with ${ }^{18} \mathrm{OH}_{2}$, followed by reduction with NaBH_{4}, provided $\left[{ }^{18} \mathrm{O}\right] 16$. On acidcatalyzed rearrangement of $\left[{ }^{18} \mathrm{O}\right] 16$ in aqueous dioxane, 72% of the label was recovered in 17 while virtually no ${ }^{18} \mathrm{O}$ was found in 18. The latter result may be due, at least in part, to oxygen exchange in 18 under our reaction conditions (see below). More importantly, the major route to 17 involves return of the ${ }^{18} \mathrm{OH}_{2}$ which departed from $\left[{ }^{18} \mathrm{O}\right] 16$.

Treatment of 16 with anhydrous methanol $-\mathrm{H}_{2} \mathrm{SO}_{4}$ gave product mixtures containing 17 and 18 as well as the analogous methyl ethers ($\mathbf{1 9}$ and 20, respectively) (Scheme 2). Under these conditions, 17 proved to be virtually inert whereas 18 was slowly but completely ($\geq 98 \%$) converted into the methyl ether 20. Therefore, the formation of alcohols cannot be due to the adventitious precence of water in the reaction mixture. The rate constants shown in Scheme 2 were derived from the distribution of products (Figure 1 and Table 3 (Experimental Section), using an independent estimate of $k_{18.20}$.

The ratio of return to exchange for the endo products (17, 19) is 70:30, very close to the result obtained with [$\left.{ }^{18} \mathrm{O}\right] 16$ in

[^3]

Figure 1. Product distributions from the methanolysis of bicyclo[3.1.1]-heptan-2-ol (16) $\left(1.75 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}, 60^{\circ} \mathrm{C}\right)$. The solid curves drawn through the data points were calculated with the rate constants given in Scheme 2.

Scheme 2

17

19

20

Table 1. Acidolysis of 2-RO-Bicyclo[3.1.1]heptanes (1.75 N $\mathrm{H}_{2} \mathrm{SO}_{4}, 60^{\circ} \mathrm{C}$)

substrate	solvent	rate $10^{5} k\left(\mathrm{~s}^{-1}\right)$	endo products		exo products	
			\%	ret: $\mathrm{exch}^{\text {a }}$	\%	ret:exch ${ }^{\text {a }}$
16	MeOH	14.6	57	70:30	43	9:91
16-OEt	MeOH	1.95	62	76:24	38	7:93
16-OMe	EtoH	0.16	63	81:19	37	9:91

${ }^{a}$ Return of RO from substrate vs exchange with $\mathrm{R}^{\prime} \mathrm{O}$ from solvent.
aqueous dioxane. For the exo products (18, 20), a much smaller ratio of return to exchange (9:91) is now reliably estimated. It should be emphasized that there is no exchange ($\mathbf{1 6} \rightarrow \mathbf{1 6}$-OMe) prior to rearrangement.
Complementary experiments were performed with 16-OEt in methanol and 16-OMe in ethanol (Table 1). Considerable variation in rates is associated with only modest changes in product distributions. Comparison of $\mathbf{1 6 - O E t}$ with 16 , both in methanol, points to enhanced return of the more nucleophilic leaving group (EtOH vs $\mathrm{H}_{2} \mathrm{O}$) in the formation of endo products. Ethanol as the solvent appears to favor internal return more strongly than methanol. However, this "solvent effect" may simply be due to the lower molarity of neat ethanol (17.1 M)

Scheme 3

relative to methanol (24.7 M) which decreases the rate of the exchange process. Within experimental error, the small ratio of return to exchange for the exo products is not affected.

Dimethyl substitution at C-6 of $\mathbf{1 6}$ introduces a stereochemical label. The acid-catalyzed rearrangements of α-nopinol ($1 \alpha, 2 \beta, 5 \alpha-$ 6,6-dimethylbicyclo[3.1.1]heptan-2-ol, 21) and β-nopinol ($1 \alpha, 2 \alpha, 5 \alpha-6,6$-dimethylbicyclo[3.1.1]heptan-2-ol, 31) in diox-ane-water have been studied previously. ${ }^{15}$ It was noticed that 21 reacts faster than 31 by factors of $10\left(90^{\circ} \mathrm{C}\right)$ to $15\left(70^{\circ} \mathrm{C}\right)$. The oxidation of 21 was also reported to proceed more rapidly than that of 31. ${ }^{16}$ The difference in reactivity is reasonably attributed, at least in part, to the enhanced strain of $21(1.3 \mathrm{kcal} /$ mol according to MMX calculations). In methanol at $60^{\circ} \mathrm{C}$, we required different concentrations of acid to convert 21 (0.5 $\left.\mathrm{N} \mathrm{H}_{2} \mathrm{SO}_{4}, k=9.8 \times 10^{-4} \mathrm{~s}^{-1}\right)$ and $31\left(1.75 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}, k=2.3\right.$ $\times 10^{-4} \mathrm{~s}^{-1}$) at convenient rates. Under these conditions, 21 was found to react stereospecifically, with exclusive migration of the CH_{2} bridge (C-7) trans to the leaving group (Scheme 3). The primary intermediate 22 is trapped to give the endo products 23 and 24 in somewhat higher yield (65.6%) and slightly lower retention: exchange ratio ($66: 34$) than was observed for the parent species 10 . Rearrangement of $\mathbf{2 2}$ generates the bridged ion $\mathbf{2 5}$ which is captured by nucleophiles, yielding predominantly 7,7 -dimethyl-exo-2-norbornyl products $(\mathbf{2 8}, 29)$, but also undergoes $6,2-\mathrm{H}$ shifts $\left(\mathbf{2 5} \rightarrow \mathbf{2 6}\right.$) leading eventually to $30 .{ }^{17.18}$

The acid-catalyzed methanolysis of $\mathbf{3 1}$ proceeds with exclusive migration of the $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$ bridge ($\mathrm{C}-6$) trans to the departing OH (Scheme 4). The behavior of the norpinyl cation 32 differs from that of the isomer 22 in two points. The yield of endo products is lower, and the ratio of return:exchange is enhanced ($\mathbf{3 3 : 3 4}=76: 24$). Both kinetic data ${ }^{19}$ and computational studies ${ }^{20}$ indicate that σ-delocalized carbocations are destabilized

[^4]
Scheme 4

Scheme 5

by methyl substitution at the bridging (pentacoordinate) carbon. As compared with 22, the shorter lifetime of the more energetic 32 will account for the less efficient nucleophilic capture (\rightarrow $33+34$) and for the enhanced fraction of internal return. Furthermore, 31 undergoes Grob fragmentation, ${ }^{21}$ leading eventually to 35 and 36 . Stereochemical evidence suggests that the fragmentation proceeds by way of $32 .{ }^{22}$ Formation of the alcohol 35 cannot occur without migration of the departing water to the exo face of 32 . It is not surprising, therefore, that the ratios of retention:exchange for exo-norbornyl products (28:29 $=6: 94)$ and fragmentation products (35:36 $=5: 95$) agree closely.

Even stronger effects on carbocation structures and energies are exerted by a methyl substituent at $\mathrm{C}-2$ of the 2-norpinyl system. The positive charge of the bridged ion 38 is expected to be more evenly distributed than in previous examples. In fact, 2-methyl-2-norpinyl substrates ($37, \mathrm{X}=\mathrm{OPNB}, \mathrm{N}_{2}{ }^{+}$) were found to give comparable amounts of 2-methyl-2-norpinyl (37, $\mathrm{X}=\mathrm{OR}$) and 1 -methyl-endo-2-norbornyl products (39, X $=$ OR). ${ }^{23}$ Moreover, the energy difference between open and bridged norpinyl cations will be attenuated since $\mathbf{4 0}$ is a tertiary ion (Scheme 5). Stereochemical studies indicate partial equilibration of $\mathbf{3 8}$ (chiral) with $\mathbf{4 0}$ (achiral). ${ }^{24}$ The rearrangement of

[^5]

Figure 2. Product distributions from the methanolysis of 2-methylbicyclo[3.1.1]heptan-2-ol (43) ($0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}, 25^{\circ} \mathrm{C}$). The solid curves drawn through the data points were calculated with the rate constants given in Scheme 6.

Scheme 6

$\mathbf{3 8} \rightleftharpoons \mathbf{4 0}$, proceeding through the 1-methyl-2-norbornyl cation as the transition state, gives rise to the 2 -methyl-2-norbornyl cation (41). σ-Delocalization in 41 is known to be weak; nucleophiles are accepted almost exclusively at the tertiary carbon (\rightarrow 42). ${ }^{25}$

In the acid-catalyzed methanolysis of 2-methylbicyclo[3.1.1]-heptan-2-ol (43), exchange of OH for $\mathrm{OMe}(43 \rightarrow 44)$, without rearrangement, was found to compete favorably with formation of the norbornyl products 45-47 (Scheme 6). This behavior, distinguishing 43 from the secondary alcohols 16,21 , and 31 , is consistent with the general features of tertiary 2 -norpinyl systems that were outlined in the preceding paragraph. Since the ether 44 undergoes acid-catalyzed rearrangement to give 45 and 47, the concentration of 44 passes through a maximum at 65% conversion of 43 (Figure 2). Starting from 44, rate constants for the $\mathbf{4 4} \rightarrow \mathbf{4 5}$ and $\mathbf{4 4} \rightarrow \mathbf{4 7}$ transformations were estimated. The remaining rate constants of Scheme 6 were varied computationally to obtain the best fit of calculated and

[^6]
Scheme 7

experimental product distributions. The kinetic analysis reveals that direct ($\mathbf{4 3} \boldsymbol{\rightarrow 4 5}+\mathbf{4 7}$) and indirect routes ($\mathbf{4 3} \rightarrow \mathbf{4 4} \rightarrow \mathbf{4 5}$ +47) make similar contributions to the formation of norbornyl ethers. The fraction of exo-2-norbornyl products from 43 and 44 (7% of 45) is inferior to that from the parent alcohol 16 (43% of $18+20$). Relative to nucleophilic capture, the rearrangement of 38 proceeds ca. 10 times more slowly than that of the parent 2 -norpinyl cation 10.
Although all data support the enhanced stability of 38 relative to 10 , the formation of 46 points to the intervention of an ion molecule complex even of 38 . In the $38-\mathrm{OH}_{2}$ pair, return of $\mathrm{H}_{2} \mathrm{O}$ to both $\mathrm{C}-1$ and $\mathrm{C}-2$ will compete with exchange of $\mathrm{H}_{2} \mathrm{O}$ for MeOH . Based on the direct formation of 46 and 47 from 43, the return:exchange ratio of $\mathbf{3 8}-\mathrm{OH}_{2}$ is estimated as $51: 49$. If $38-\mathrm{OH}_{2}$ is compared with the parent system $10-\mathrm{OH}_{2}$, the moderate decrease of the return:exchange ratio (by a factor of ca. 3) points to slightly weaker association in $38-\mathrm{OH}_{2}$.

2-Norbornyl \rightarrow 2-Norbornyl Rearrangements. As an example of a nondegenerate 1,2 shift we chose the conversion of endo-tricyclo[5.2.1.0 $0^{2.6}$]decan-8-ol (48) into the exo isomer 51 (Scheme 7) which is associated with a decrease in strain energy of ca. $4.5 \mathrm{kcal} / \mathrm{mol} .{ }^{26}$ The methanolysis of 48 -OTs was reported to proceed 3.7 times faster than that of $\mathbf{5 1 - O T s} ;{ }^{27}$ both tosylates gave predominantly exo ether 52 together with 3-7\% of endo ether 49, presumably by capture of the bridged cation $50 .{ }^{27.28}$

The methanolysis of 48 , leading to 49,51 , and 52 , required strongly acidic conditions and long reaction times. The products 49 and 51 also reacted with formation of 52 , albeit more slowly than 48. Deviations from first-order kinetics precluded an exact analysis, but extrapolation of the product ratios to zero conversion gave reproducible results (Scheme 7). The data indicate a small amount of exchange ($\mathbf{4 8} \rightarrow \mathbf{4 9}$) prior to rearrangement and a $63: 37$ ratio of return $(\mathbf{4 8} \boldsymbol{\rightarrow 5 1})$ to exchange $(\mathbf{4 8} \boldsymbol{\rightarrow} \mathbf{5 2})$ at the terminus of the 1,2 shift. Thus the behavior of the present system is intermediate between that of secondary and tertiary 2 -norpinanols.

Spiro(bicyclo[2.2.1]heptane-2,1'-cyclopropy-6-yl) derivatives (e.g., 53) are known to rearrange with formation of tricyclo[4.2.1.0 ${ }^{3.7}$]non-3-yl products (e.g., 56; Scheme 8). ${ }^{29}$ The 6,2carbon shift leading to 55 is thought to proceed from the bridged ion 54 since equivalence of $\mathrm{C}-1$ and $\mathrm{C}-2$ is achieved within

[^7]Scheme 8

$\leq 10^{-13} \mathrm{~s} .{ }^{30}$ The acid-catalyzed methanolysis of $\mathbf{5 3}$ afforded the alcohol 56 and the methyl ether 57 in a 9.5:90.5 ratio (extrapolated to $t=0$ to correct for the slow conversion of $\mathbf{5 6}$ into 57). In this instance, the migration terminus is γ to the origin. Hence return of the departing water molecule is a minor process, as was observed in allylic rearrangements ($\mathbf{1} \rightarrow 2 ; 5$ $\rightarrow 6$) and fragmentation reactions ($31 \rightarrow 35$).

2-Bicyclo[3.2.0]heptyl \rightarrow 7-Norbornyl Rearrangements. Acetolysis of either exo-2-bicyclo[3.2.0]heptyl brosylate (58OBs) or 7 -norbornyl brosylate ($60-\mathrm{OBs}$) was found to give similar product distributions ($60-\mathrm{OAc}: 58-\mathrm{OAc} \approx 95: 5$). ${ }^{31}$ The bridged ion 59 was proposed as a common intermediate.

We failed to achieve clean acid-catalyzed conversions of bicyclo[3.2.0]heptan-exo-2-ol (58-OH) into 7-norbornanol (60OH), dehydration being the major process. The more reactive endo-2-methylbicyclo[3.2.0]heptan-exo-2-ol (62) has been reported to rearrange smoothly with formation of 1 -methyl-7norbornanol ($63,98 \%$ yield). ${ }^{32}$ However, 63 appears to be the product of thermodynamic control since hydrolyses of both endo-2-methylbicyclo[3.2.0]hept-exo-2-yl p-nitrobenzoate (61) and 1-methyl-7-norbornyl triflate ($63, \mathrm{R}=\mathrm{CF}_{3} \mathrm{SO}_{2}$) afford $>90 \%$ of $\mathbf{6 2}$ and $<5 \%$ of $\mathbf{6 3}{ }^{33}$ (Scheme 9). Nucleophilic capture of the intermediate carbocation(s) at the tertiary position clearly prevails under conditions of kinetic control. Accordingly, we found that the acid-catalyzed methanolysis of 62 proceeds predominantly with $\mathrm{OH} / \mathrm{OMe}$ exchange to give exo-2-methoxy-endo-2-methylbicyclo[3.2.0]heptane (66). More slowly, 66 equilibrates with the endo-2-methoxy-exo-2-methyl isomer 65 , and the mixture is eventually converted into 7 -methoxy-1methylnorbornane (64). A small amount ($2-3 \%$) of 1-methyl7 -norbornanol (63) was also obtained but does not necessarily arise from 62. We observed an increase of 63 (to ca. 10%)

[^8]Scheme 9

Scheme 10

after 62 had been consumed, suggesting that cleavage of 64 occurs under these strongly acidic conditions. We conclude that the recombination of ion-molecule complexes to give $\mathbf{6 3}$ occurs to a very minor extent, if at all.

The reaction profile is changed dramatically by introducing a second methyl group at $\mathrm{C}-1$. The p-nitrobenzoate 67 was found to solvolyze with predominant formation of 1,7-dimethyl7 -norbornanol (68), attesting to the enhanced driving force for rearrangement which the generation of a tertiary 7 -norbornyl cation provides (Scheme 10). In the acid-catalyzed methanolysis of 1 ,endo-2-dimethylbicyclo[3.2.0]heptan-exo-2-ol (69), return of the departing water to the neighboring carbon afforded 68 as the major product. The ratio of return to exchange, $92: 8$, surpasses all previous examples. Although 72 was not detected, we cannot exclude a small amount of exchange prior to rearrangement since 72 reacts faster ($k \approx 6.1 \times 10^{-4} \mathrm{~s}^{-1}$) than $69\left(k \approx 3.2 \times 10^{-4} \mathrm{~s}^{-1}\right)$. The unusual order of reactivities, $\mathrm{OMe}>\mathrm{OH}$, can be attributed to enhanced relief of F -strain in the heterolysis of $\mathbf{7 2}-\mathrm{H}^{+}$, as compared with $\mathbf{6 9}-\mathrm{H}^{+}$. The acidcatalyzed methanolysis of 1, exo-2-methylbicyclo[3.2.0]heptan-endo-2-ol (70) proceeded less readily than that of the epimer 69 to give predominantly 71. In this case, the departing water must relocate from the endo to the exo face of the molecule in order to produce 68. Hence the return:exchange ratio is low (10:90), as was observed in norpinyl \rightarrow exo-2-norbornyl rearrangements.

Scheme 11

4-Protoadamantyl \rightarrow 2-Adamantyl Rearrangements. Much experimental and computational effort has been directed to the 4-protoadamantyl $\rightarrow 2$-adamantyl rearrangement, an important step in the synthesis of adamantoid hydrocarbons. ${ }^{34-37}$ The prominent role of the bridged ion 74 has recently been confirmed (Scheme 11). The acid-catalyzed rearrangement of optically active exo-4-protoadamantanol-4-d (73) was found to give 2-adamantanol-l-d (75) with 97% ee. ${ }^{38}$ Although the endo isomer of 73 reacted similarly, rather vigorous conditions were required which led to partial racemization of 75 . Therefore, only exo-4-protoadamantanol ($76-\mathrm{OH}$) was included in the present work. The ${ }^{18} \mathrm{O}$-labeled compound afforded $72-75 \%$ of ${ }^{18} \mathrm{O}$-2-adamantanol on acid-catalyzed rearrangement in aqueous organic media. In neat methanol, $76-\mathrm{OH}$ reacted to give 78% of 2 -adamantanol ($77-\mathrm{OH}$) and 22% of 2 -methoxyadamantane ($78-\mathrm{OMe}$). The return:exchange ratio increased further in the methanolysis of 77-OEt and ethanolysis of 77-OMe (Scheme 11). No exchange of OR for OR^{\prime} in 76 and no interconversion of 2-adamantanol with its ethers was observed.

In the 4-methyl-4-protoadamantyl cation, charge stabilization attenuates the rate of the protoadamantyl \rightarrow adamantyl rearrangement. Thus hydrolysis of endo-4-methyl-exo-4-protoadamantyl p-nitrobenzoate (79 -OPNB) gave the parent alcohol 79 and 1-methyl-2-adamantanol (81) in a $24: 76$ ratio $^{355.39}$ while methanolysis of 79-OPNB afforded the analogous methyl ethers 83 and 84 in a $78: 22$ ratio (Scheme 12). Accordingly, the fastest reaction in the acid-catalyzed methanolysis of endo-4-methyl-exo-4-protoadamantanol (79) was exchange of OH for OMe (79 $\rightarrow 82+83$), with predominant retention of configuration (Figure 3). The reaction conditions applied to 79 converted 83 into 84 and a small amount of the more stable epimer 82, with the rate

[^9]Scheme 12 ${ }^{\text {a }}$

${ }^{a}$ Regular numbers are rate constants ($10^{5} k \mathrm{~s}^{-1}$). Numbers in brackets refer to $80,1.75 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$

Figure 3. Product distributions from the methanolysis of endo-4methyltricyclo[4.3.1.0 $0^{3.8}$]decan-exo-4-ol (79) $\left(0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}, 25{ }^{\circ} \mathrm{C}\right)$. The solid curves drawn through the data points were calculated with the rate constants given in Scheme 12.
constants specified in Scheme 12. The remaining rate constants were estimated by kinetic simulation of the product distributions, as described above for 43 . The rates at which 79 gives rise to 1-methyl-2-adamantanol (81) and 2-methoxy-1-methyladamantane (84) indicate a return to exchange ratio of $64: 36$ at the migration origin.

The methanolysis of exo-4-methyl-endo-4-protoadamantanol (80) required strongly acidic solutions in order to proceed at convenient rates. Exchange of OH for OMe in $\mathbf{8 0}$ produced 83 as the predominant product, as was observed with 79. In accordance with previous solvolytic results, ${ }^{35 \mathrm{~b}, 36 \mathrm{~b}}$ the stereochemistry of the exchange process is controlled by the intervening carbocation rather than by the precursor. In $\mathrm{MeOH}-1.75$ $\mathrm{N} \mathrm{H}_{2} \mathrm{SO}_{4}$, the rearrangement of 83 was too fast for direct measurement. Therefore, the kinetic simulation of Scheme 12 is less reliable for $\mathbf{8 0}$ (numbers in brackets) than for $\mathbf{7 9}$ (Figure 4). As compared with 79, a lower ratio of return to exchange, 29:71, was found for the conversion of 80 into 81 and 84 . In

Figure 4. Product distributions from the methanolysis of exo-4methyltricyclo[4.3.1.0 $0^{3.8}$]decan-endo-4-ol (80) ($1.75 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}, 25{ }^{\circ} \mathrm{C}$). The solid curves drawn through the data points were calculated with the rate constants given in Scheme 12.

Table 2. Return:Exchange Ratios in 1,2 Alkyl Shifts

substrate		leaving group	solvent	return:exchange	
				same side	opposite face
sec-2-norpinyl	16	$\mathrm{H}_{2}{ }^{18} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O}^{\text {a }}$	2.6	<0.10
	16	$\mathrm{H}_{2} \mathrm{O}$	MeOH	2.3	0.10
	16-OEt	EtOH	MeOH	3.2	0.08
	16-OMe	MeOH	EtOH	4.3	0.10
	21	$\mathrm{H}_{2} \mathrm{O}$	MeOH	1.9	0.02
	31	$\mathrm{H}_{2} \mathrm{O}$	MeOH	3.2	0.06
tert-2-norpinyl	43	$\mathrm{H}_{2} \mathrm{O}$	MeOH	1.0	n.a. ${ }^{\text {b }}$
2-norbornyl	48	$\mathrm{H}_{2} \mathrm{O}$	MeOH	1.7	n.a.
2-bicyclo[3.2.0]heptyl	69	$\mathrm{H}_{2} \mathrm{O}$	MeOH	11.5	n.a.
	70	$\mathrm{H}_{2} \mathrm{O}$	MeOH	n.a.	0.11
sec-4-protoadamantyl	76	$\mathrm{H}_{2}{ }^{18} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O}^{\text {a }}$	2.6	n.a.
	76	$\mathrm{H}_{2} \mathrm{O}$	MeOH	3.5	n.a.
	76-OEt	EtOH	MeOH	5.3	n.a.
	$76-\mathrm{OMe}$	MeOH	EtOH	6.7	n.a.
tert-4-protoadamantyl	79	$\mathrm{H}_{2} \mathrm{O}$	MeOH	1.8	n.a.
	80	$\mathrm{H}_{2} \mathrm{O}$	MeOH	n.a.	0.41

${ }^{a} \mathrm{H}_{2} \mathrm{O}$-dioxane (2:3). ${ }^{b}$ Not applicable.
order to generate 81, the water molecule departing from $80-\mathrm{H}^{+}$ has to travel by a longer distance than that departing from 79H^{+}.

Discussion

The 1,2 shifts we have studied (Table 2) are mediated by rapidly equilibrating or σ-delocalized carbocations in which the distribution of positive charge is attained on the time scale of molecular vibrations, within $\sim 10^{-13} \mathrm{~s}$. Nucleophilic capture by the solvent proceeds more slowly. As a rule, similar product ratios are obtained on solvolytic generation of these ions from appropriate isomeric substrates (e.g., 79-ODNB and 81-OTs). ${ }^{35 \mathrm{~b}}$ These product distributions reflect the relative rates of solvent attack at the migration terminus $\left(k_{1}\right)$ and origin $\left(k_{0}\right)$. With k_{0} / k_{t} ≥ 10, acidolyses of alcohols proceed without significant exchange of OH for OR at the migration terminus; thus the ratio of return to exchange at the migration origin is readily estimated (cf. 16, 21, 31, 48, 69, and 76). If $k_{0} \sim k_{1}$, the desired data can be derived, although less directly, by kinetic simulations
(cf. 43, 79, and 80). In the case of $k_{0} / k_{1} \leq 0.1$, no meaningful results are obtained, due to prevailing exchange at the migration terminus (cf. 62).

For a discussion of internal return, two types of rearrangement will be distinguished. (i) In 1,2 shifts proceeding with inversion at both the migration terminus and origin, the leaving group returns to the neighboring carbon atom on the same side of the molecular framework from which it departed. The distance covered by the migrating molecule is virtually the same for all rearrangements of this type. However, the return to exchange ratios vary from 11.5 for 69 to 1.0 for 43 . It seems reasonable to relate the return:exchange ratios to cation stabilities since increasing stability should decrease the rate of nucleophilic capture. Although this correlation is applicable to the series of norpinyl cations derived from 16,21, 31, and 43, it does not pass the test of structural diversity. According to solvolysis rates, the 7 -methyl-7-norbornyl cation is more stable than the 1-methyl-2-adamantyl cation, ${ }^{40,35 \mathrm{~b}}$ yet the return:exchange ratio for the former ($\rightarrow 68+71,92: 8$) exceeds that for the latter $(\rightarrow$ $81+84,64: 36)$.

The same absence of a correlation between the thermodynamic stability of α-substituted benzyl cations and their reaction rates with nucleophiles has been noted previously. ${ }^{41}$ The electronic and structural reorganization that occurs upon capture of delocalized ions is thought to raise the intrinsic barrier of nucleophilic attack relative to more localized species. The products 81 and 84 arise from a delocalized ion whose structure should be intermediate between the more strained but tertiary 4-methyl-4-protoadamantyl cation (85) and the less strained but secondary 1-methyl-2-adamantyl cation (86). ${ }^{35 \mathrm{~b}}$ On the other hand, 68 and 71 originate from the localized, tertiary 7 -methyl-7-norbornyl cation (87) to which the more strained $1,2-$ dimethylbicyclo[3.2.0]hept-2-yl structure (88) makes only a minor contribution. Other examples, such as 48 and 76, also support the view that the return:exchange ratios depend more on the extent of charge delocalization than on the thermodynamic stabilitiy of the intervening carbocations.

85

86

87

88
(ii) Retention at either the migration origin or the terminus of a 1,2 shift requires the leaving group to approach the neighboring carbon from the face opposite to that from which it departed. For comparison with type i rearrangements, we focus on substrates that give rise to diastereomeric products (2norpinyl \rightarrow exo- and endo-2-norbornyl) and on diastereomeric substrates that afford the same product(s) $(\mathbf{6 9 / 7 0}, 79 / 80)$. In each case, the return:exchange ratio for type ii rearrangements was much lower than that for type i rearrangements. However, enhanced return was found for 80 as compared with 16 and 70 (Table 2). Inspection of molecular models shows that 80 is converted into 81 by an eq $\rightarrow e q$ shift of water on a six-membered ring, as indicated in 89 . In contrast, the formation

[^10]of $\mathbf{1 8}$ from $\mathbf{1 6}$ can be viewed as an $a x \rightarrow a x$ shift (see 90). The geometry of type ii rearrangements, in particular the distance covered by the migrating molecule, obviously affects the return: exchange ratios.

89

90

Our findings are conveniently interpreted in terms of ionmolecule (ion-dipole) complexes whose collapse competes with exchange of the complexed molecule. In order to gain insight into the lifetime of ion-molecule complexes, we compare the rate of "ligand exchange" with the rate of purely diffusional processes. Upon generation of di- and triarylcarbenium ions by laser flash photolysis, rate constants $k_{\mathrm{s}} \leq 10^{9} \mathrm{~s}^{-1}$ were measured for the pseudo-first-order reactions of these ions with protic solvents. ${ }^{42}$ A linear correlation of k_{s} vs $\mathrm{p} K_{\mathrm{R}^{+}}$was obtained from which $k_{\mathrm{s}}=10^{10.5} \mathrm{~s}^{-1}$ for the tert-butyl cation was derived by a small extrapolation. The carbocations we have studied are very close to tert-butyl in stability. Therefore we adopt k $\sim 10^{10.5} \mathrm{~s}^{-1}$ for the rate of collapse of ion-molecule complexes. With an average return:exchange ratio of ~ 3, we arrive at $k_{\text {ex }}$ $\sim 10^{10} \mathrm{~s}^{-1}$ for the rate of "ligand exchange". Diffusional exchange in bulk water occurs at a rate of $\sim 2 \times 10^{1!} \mathrm{s}^{-1.43}$ Spectroscopic methods, in particular nuclear magnetic resonance relaxation, indicate that the mobility of water molecules in the solvation shell of large monovalent ions ("structure breakers") may be enhanced relative to that of bulk solvent. Thus our estimate for the rate of diffusion into and out of the solvation shell is $k_{\text {diff }}=10^{11}-10^{12} \mathrm{~s}^{-1}$, which exceeds $k_{\text {ex }}$ by only $1-2$ orders of magnitude. These estimates are consistent with weakly bonded carbocation-molecule complexes that reside in flat potential wells.

Conclusions

In acid-catalyzed rearrangements of bicyclic and polycyclic alcohols or ethers, return of the departing ROH molecule to a neighboring position competes with capture of the intervening carbocations by the solvent $\mathrm{R}^{\prime} \mathrm{OH}$. If the leaving group departs and returns on the same side of the carbon framework, return: exchange ratios ranging from 1 to 11.5 have been observed. Carbocations with extensive charge delocalization show less internal return than species with localized charges. Migration of the departing molecule to the opposite face (endo - exo) or to a β carbon is a minor process (return:exchange ~ 0.1). The internal return in favorable 1,2 alkyl shifts greatly exceeds that previously reported for racemization and allylic rearrangement. Our observations are interpreted in terms of ion-molecule (iondipole) complexes whose collapse competes with ligand exchange. Kinetic arguments suggest short lifetimes ($\leq 10^{-10} \mathrm{~s}$) and low potential barriers ($\leq 2 \mathrm{kcal} / \mathrm{mol}$) for carbocationmolecule complexes.

[^11]
Experimental Section

General Methods. Melting points were determined on a Kofler hot-stage apparatus and are uncorrected. ${ }^{\text {'H }} \mathrm{H}$ NMR spectra were obtained at 80 (Bruker WP 80) and 400 MHz (Bruker AM-400). ${ }^{2} \mathrm{H}$ (61.42 MHz) and ${ }^{13} \mathrm{C}(100.61 \mathrm{MHz}) \mathrm{NMR}$ spectra were recorded on the Bruker AM- 400 spectrometer. Chemical shifts in CDCl_{3} are reported in δ relative to tetramethylsilane unless otherwise indicated. Gas chromatography (GC) was performed by the use of a Siemens Sichromat equipped with glass capillary columns (length, stationary phase, and temperature for the individual mixtures are given below). Varian Aerograph instruments equipped with packed glass columns were used for preparative gas chromatography (PGC). High-pressure liquid chromatography with LDC (Milton Roy) chromatographs and refractometric detection. Mass spectra were obtained on a Varian MAT CH5 instrument (70 eV). Kinetic simulations were performed with a program kindly provided by Dr. R. Fink and Prof. Dr. W. R. Roth. The program uses a Marquardt routine in varying the rate contants to obtain the best fit of calculated and experimental product distributions.
[$\left.{ }^{18} \mathrm{O}\right]$ Bicyclo[3.1.1]heptan-2-ol (16). Bicyclo[3.1.1] heptan-2-one ${ }^{44}$ $(1.00 \mathrm{~g}, 9.08 \mathrm{mmol})$, anhydrous tetrahydrofuran $(5 \mathrm{~mL}),{ }^{18} \mathrm{OH}_{2}(2 \mathrm{~mL}$, ca. $55 \%{ }^{18} \mathrm{O}$), and concentrated $\mathrm{HCl}(1 \mu \mathrm{~L})$ were heated at reflux for 48 h . After being cooled to room temperature, the mixture was extracted with pentane. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated by distillation (18 cm Vigreux column) to give 1.0 g of crude ($\geq 96 \%$, GC) $\left.{ }^{18} \mathrm{O}\right]$ bicyclo[3.3.1] heptan-2-one. IR (CDCl_{3}): 1726 $(\mathrm{C}=\mathrm{O})$ and $1695\left(\mathrm{C}={ }^{18} \mathrm{O}\right) \mathrm{cm}^{-1}$.

To sodium borohydride ($280 \mathrm{mg}, 7.4 \mathrm{mmol}$) in water (1.5 mL) was added at $0^{\circ} \mathrm{C}$ [$\left.{ }^{18} \mathrm{O}\right]$ bicyclo[3.3.1] heptan-2-one ($900 \mathrm{mg}, 8.12 \mathrm{mmol}$) in methanol (0.6 mL). After the mixture was stirred for 12 h , acetic acid was added dropwise to destroy the excess NaBH_{4}. The mixture was extracted with ether ($4 \times 10 \mathrm{~mL}$); the combined extracts were washed with aqueous NaHCO_{3} and water, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to give $820 \mathrm{mg}(89.5 \%)$ of $\left[{ }^{18} \mathrm{O}\right] 16$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.03(\mathrm{dd}, J=9.5$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.68(\mathrm{~m}, 3 \mathrm{H})$, $1.78-1.87(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}, \mathrm{OH}), 2.08-2.17$ (m, 2 H), 2.25-2.33 $(\mathrm{m}, 2 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H})$, in agreement with the spectrum reported for 16. ${ }^{4 \mathrm{~b}}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 25.36\left(\mathrm{CH}_{2}\right), 26.44\left(\mathrm{CH}_{2}\right), 26.60\left(\mathrm{CH}_{2}\right)$, $33.73(\mathrm{CH}), 34.13\left(\mathrm{CH}_{2}\right), 41.53(\mathrm{CH}), 71.785\left(\mathrm{CH} \cdot{ }^{18} \mathrm{O}\right), 71.812(\mathrm{CH}-$ ${ }^{15} \mathrm{O}$). The peaks of $\mathrm{C}-2$ were too broad for an estimate of the ${ }^{18} \mathrm{O}$ content. Therefore, $\left[{ }^{[80} \mathrm{O}\right] 16$ was converted to the 3,5 -dinitrobenzoate ${ }^{13 \mathrm{~b}}$ $\left(92 \%, \mathrm{mp} 74^{\circ} \mathrm{C}\right.$) which showed sharp peaks at $\delta 78.301(55.2 \%)$ and 78.343 (44.8%).
[$\left.{ }^{18} \mathrm{O}\right]$ Bicyclo[3.1 .1$]$ heptan- 2 -ol ($\left.{ }^{18}{ }^{18} \mathrm{O}\right] 16,110 \mathrm{mg}, 0.97 \mathrm{mmol}$) was dissolved in 11 mL of a 1.75 M solution of HClO_{4} in dioxane-water (3:2). After having been heated at $60^{\circ} \mathrm{C}$ for 1 h , the mixture was extracted with ether (20 mL). The extract was washed with aqueous NaHCO_{3} and water, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue, containing bicyclo[2.2.1]heptan-endo-2-ol (17, 46.8\%) and bicyclo[2.2.1]heptan-exo-2-ol (18, 53.2%), was treated with 3,5dinitrobenzoyl chloride ($225 \mathrm{mg}, 0.976 \mathrm{mmol}$) in pyridine (1 mL). After being stirred at room temperature for 12 h , the mixture was dissolved in ether. The organic phase was washed with 10% aqueous HCl , aqueous NaHCO_{3}, and water, dried (MgSO_{4}), and concentrated in vacuo. HPLC (Si 100-5, hexane-ether (9:1)) afforded 17-ODNB, ${ }^{43}$ $\mathrm{mp} 121-122{ }^{\circ} \mathrm{C}\left({ }^{13} \mathrm{C}\right.$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 78.886\left(\mathrm{C}-2-^{18} \mathrm{O}, 39.9 \%\right)$, $78.928\left(\mathrm{C}-2-{ }^{16} \mathrm{O}, 60.1 \%\right)$ and 18 -ODNB,,$^{46} \mathrm{mp} 104-105{ }^{\circ} \mathrm{C}\left({ }^{13} \mathrm{C}\right.$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 80.753\left(\mathrm{C}-2^{-16} \mathrm{O}\right)$).

Acidolyses of Bicyclo[3.1.1]heptan-2-ol (16), 2-Ethoxybicyclo[3.1.1]heptane (93), and 2-Methoxybicyclo[3.1.1]heptane (94). The substrates $16,{ }^{44 b} 93$, ${ }^{13 b}$ and $944^{45}(20-50 \mathrm{mg})$ were dissolved in $2-5$ mL of methanolic (ethanolic) $1.75 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$. The mixtures were heated in a circulating water bath at $60 \pm 0.1^{\circ} \mathrm{C}$. Aliquots ($50-200 \mu \mathrm{~L}$) were removed with a syringe through a septum and quenched by mixing with ether (0.5 mL) and $\mathrm{NaHCO}_{3}(15-60 \mathrm{mg})$. The ether solutions were dried $\left(\mathrm{MgSO}_{4}\right)$ and analyzed by GC $\left(58.5 \mathrm{M}\right.$ Edenol $1800,70^{\circ} \mathrm{C}$

[^12]Table 3. Acidolysis of Bicyclo[3.3.1]heptan-2-ol (16) in Methanol ($1.75 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}, 60^{\circ} \mathrm{C}$)

time (h)	19	20	18	17	16	$17: 19$
0	-	-	-	-	100	-
1	7.0	15.1	1.9	15.7	60.3	2.24
2	11.5	26.1	2.7	26.4	33.3	2.30
2.5	12.4	28.4	2.9	29.1	27.2	2.33
3.5	14.4	33.4	3.2	33.0	16.0	2.29
4.5	15.1	35.5	3.5	36.5	9.4	2.42
5.5	15.9	37.3	3.6	37.6	5.6	2.36

Table 4. Acidolysis of Bicyclo[2.2.1]heptan-exo-2-ol (18) in Methanol (1.75 N H2 $\mathrm{SO}_{4}, 60^{\circ} \mathrm{C}$)

| time (h) | 0 | 1 | 2 | 2.5 | 3.5 | 4.5 | 5.5 | 24 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

for ethers, $140^{\circ} \mathrm{C}$ for alcohols). Bicyclo[2.2.1]heptan-endo-2-01 (17) (Aldrich), bicyclo[2.2.1]heptan-exo-2-ol (18) (Aldrich), endo-2. methoxybicyclo[2.2.1]heptane (19) ${ }^{46}$, exo-2-methoxybicyclo[2.2.1]heptane (20), ${ }^{46}$ endo-2-ethoxybicyclo [2.2.1]heptane (91), ${ }^{13 \mathrm{~b}}$ and exo-2-ethoxybicyclo[2.2.1]heptane (92) ${ }^{13 \mathrm{~b}}$ were identified by comparison with authentic samples.

The product distributions obtained from $\mathbf{1 6}$ (Table 3) indicate that the ratio of endo products ($\mathbf{1 7 : 1 9}$) was virtually constant whereas the ratio of exo products ($\mathbf{1 8 : 2 0}$) decreased slightly. Under the conditions applied to 16 , the conversion of $\mathbf{1 8}$ into 20 was found to proceed with $k=(0.41 \pm 0.01) \times 10^{-5} \mathrm{~s}^{-1}$ (Table 4). This number was used in simulating the product distributions of Table 3 with rate constants (estimated error $\pm 3 \%$) for the competing reactions of 16 (Scheme 2). The ratios $k_{16.17}: k_{16.19}=2.34$ and $k_{16.18}: k_{16.20}=0.103$ agree closely with the average product ratios $\mathbf{1 7 : 1 9}=2.32$ and $\mathbf{1 8 : 2 0}=0.103$, respectively, from Table 3. We conclude that the slow conversion of $\mathbf{1 8}$ into 20 does not affect the results significantly. Therefore, no analogous corrections were applied to the acidolyses of 93 in methanol (Table 5S, supporting information) and of 94 in ethanol (Table 6S). The ratios of retention to exchange recorded in Table 1 were obtained from the average product distributions of Tables 5 S and 6 S .

Methanolyses of 6,6-Dimethybicyclo[3.1.1]heptan-2 β-ol (21) and 6,6-Dimethylbicyclo [3.1.1] heptan-2 α-ol (31). Reduction of 6.6-dimethylbicyclo[3.1.1]heptan-2-one (nopinone) with LiAlH_{4} afforded 82% of $21 .{ }^{47,48}$ Heating of $21(0.20 \mathrm{~g}, 1.4 \mathrm{mmol})$ with aluminum isopropoxide ($285 \mathrm{mg}, 1.4 \mathrm{mmol}$), isopropyl alcohol (1.7 mL), and acetone (0.02 mL) at $120^{\circ} \mathrm{C}$ for 96 h yielded $102 \mathrm{mg}(51 \%)$ of $31 .{ }^{47}$ In contrast to the reported procedures, purification of the alcohols was achieved by HPLC (Lichrosphere 100-5, pentane-ether (2:3)). The ${ }^{13} \mathrm{C}$ NMR spectra of 21 and 31 were in agreement with published data. ${ }^{49}$ Methanolyses were performed as described for 16. GC: 58.5 M Edenol, $120^{\circ} \mathrm{C}$, and 26.5 M PPG, $90^{\circ} \mathrm{C}$. Product distributions are recorded in Tables 7S and 8S. 3.3-Dimethylbicyclo[2.2.1]heptan-endo2 -ol (23), ${ }^{17} 7.7$-dimethylbicyclo[2.2.1] heptan-exo- and endo-2-ol (28, 33), ${ }^{17}$ 2-(cyclohex-3-en-1-yl)propan-2-ol (35), ${ }^{47}$ and the methyl ethers 24, 29, 30, 34, and 36 were available from earlier work. ${ }^{18}$

[^13]Methanolysis of 2-Methylbicyclo[3.1.1]heptan-2-ol (43). By following the procedure described for 16, samples of 43^{50} in 0.1 N methanolic $\mathrm{H}_{2} \mathrm{SO}_{4}$ were reacted at $25^{\circ} \mathrm{C}$. GC: 58.5 M Edenol, $80 \rightarrow$ $100^{\circ} \mathrm{C}$. The products (Scheme 6, Table 9S) were identified by comparison with authentic samples of 2-methoxy-2-methylbicyclo[3.1.1]heptane (44), ${ }^{23}$ exo-2-methoxy-endo-2-methylbicyclo[2.2.1]heptane (45), ${ }^{23}$-methylbicyclo[2.2.1]heptan-endo-2-ol (46), ${ }^{3 l}$ and endo-2-methoxy-1-methylbicyclo[2.2.1] heptane (47). ${ }^{23}$ The formation of $\mathbf{4 5}$ and $\mathbf{4 7}$ from 44 in 0.1 N methanolic $\mathrm{H}_{2} \mathrm{SO}_{4}$ was also monitored (Table 10S). The rate constants thus obtained were used in simulating the product distributions of Table 9S according to Scheme 6. The conversion of endo-2-methylbicyclo[2.2.1]heptan-exo-2-ol ${ }^{52}$ into 45 (Table 10S) was found to be slow enough to exclude formation of the tertiary alcohol in significant amounts from 43.

Methanolysis of endo-Tricyclo[5.2.1.0 ${ }^{2,6}$]decan-exo-8-ol (48). Hydroboration of endo-tricyclo[5.2.1.02.6]dec-8-ene afforded $48,{ }^{53} \mathrm{mp} 81$ ${ }^{\circ} \mathrm{C}$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 26.20\left(\mathrm{CH}_{2}\right), 27.03\left(\mathrm{CH}_{2}\right), 28.36\left(\mathrm{CH}_{2}\right)$, $36.37\left(\mathrm{CH}_{2}\right), 39.21\left(\mathrm{CH}_{2}\right), 40.66(\mathrm{CH}), 43.62(\mathrm{CH}), 43.91(\mathrm{CH}), 49.69$ $(\mathrm{CH}), 69.98(\mathrm{CH})$. The methanolysis of 48 at $50^{\circ} \mathrm{C}$ proceeded slowly ($k \approx 2.8 \times 10^{-6} \mathrm{~s}^{-1}$) even with $5 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ (Table 11S). At temperatures above $50^{\circ} \mathrm{C}$, a colorless solid (polymer?) precipitated and product distributions were not reproducible. GC analysis (43.5 M Edenol, $150^{\circ} \mathrm{C}$) indicated the formation of exo-tricyclo[5.2.1.0 $0^{2.6}$]decan-exo-8-ol (51), ${ }^{53}$ exo-8-methoxy-endo-tricyclo[5.2.1.0 ${ }^{2.6}$]decane (49), ${ }^{28}$ and exo-8-methoxy-exo-tricyclo[5.2.1.0 ${ }^{2.6}$]decane (52). ${ }^{28}$ The reaction conditions applied to $\mathbf{4 8}$ slowly converted 51 into $\mathbf{5 2}$ ($1770 \mathrm{~min}, 3 \%$; $3000 \mathrm{~min}, 5 \% ; 8685 \mathrm{~min}, 15.5 \%$). Simulation of the product distributions was inconclusive, due to deviations from first-order kinetics, but the fractions of $\mathbf{5 1}$ and $\mathbf{5 2}$ extrapolated linearly to 60.0 and 35.9%, respectively, for $t \rightarrow 0$.

Methanolysis of Spiro(bicyclo[2.2.1]heptane-2,1'-cyclopropan)-exo-6-ol (53). The reaction of $53^{29 b, 30}$ in methanolic $1.75 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ at $50{ }^{\circ} \mathrm{C}$, producing tricyclo[4.2.1.0 ${ }^{3.7}$]nonan- 3 -ol $(56)^{29 b}, 30$ and the analogous methyl ether 57, was monitored by GC (22 M Marlophen, $80^{\circ} \mathrm{C}$) (Table 12S). The reaction conditions led to slow conversion of $\mathbf{5 6}$ into $\mathbf{5 7}(1.5 \%$ after 50 h$)$ while $\mathbf{5 7}$ was found to be inert.

In a preparative run, $53(1.5 \mathrm{~g}, 10.9 \mathrm{mmol})$ was dissolved in methanolic $1.75 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}(140 \mathrm{~mL})$. The mixture was heated at 30 ${ }^{\circ} \mathrm{C}$ for 24 h and then distributed between water and ether. The combined ether solutions were washed with aqueous NaHCO_{3}, dried (MgSO_{4}), and concentrated by distillation (15 cm Vigreux column). HPLC (Lichrosphere 100-5, hexane-ether (40:1)) of the residue afforded $1.1 \mathrm{~g}(67 \%)$ of 3-methoxytricyclo[4.2.1.0 ${ }^{3,7}$]nonane (57). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.79(\mathrm{dm}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{dd}, J=12.0$ and $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.29-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{dm}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-$ $1.80(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.97(\mathrm{~m}, 3 \mathrm{H}), 2.10-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{dm}, J$ $=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 28.45\left(\mathrm{CH}_{2}\right)$, $32.97\left(\mathrm{CH}_{2}\right), 35.87(\mathrm{CH}), 36.40(\mathrm{CH}), 37.75\left(\mathrm{CH}_{2}\right), 40.73\left(\mathrm{CH}_{2}\right), 45.73$ $\left(\mathrm{CH}_{2}\right), 50.03(\mathrm{CH}), 50.93\left(\mathrm{CH}_{3}\right), 89.32(\mathrm{C})$.

Methanolysis of endo-2-Methylbicyclo[3.2.0]heptan-exo-2-ol (62). The reaction was carried out in a fashion similar to that described for 16. GC: 107 m Carbowax $+\mathrm{KOH}, 120^{\circ} \mathrm{C}$. At $40^{\circ} \mathrm{C}$, the exchange of OH for $\mathrm{OMe}\left(62 \rightarrow \mathbf{6 6}\right.$) predominated (Table 13S). At $60^{\circ} \mathrm{C}$, conversion of exo-2-methoxy-endo-2-methylbicyclo[3.2.0]heptane (62) into the epimer 65 and into 7 -methoxy-1-methylbicyclo[2.2.1]heptane (64) took place and 1 -methylbicyclo[2.2.1]heptan-7-ol (63) increased slowly, presumably due to cleavage of 64 . Samples of all products were available from previous work. ${ }^{32.33}$

Solvolysis of 1,endo-2-Dimethylbicyclo[3.2.0]hept-exo-2-yl pNitrobenzoate (67). 1,endo-2-Dimethylbicyclo[3.2.0]heptan-exo-2-ol (69) ${ }^{32}$ ($50 \mathrm{mg}, 0.35 \mathrm{mmol}$) was dissolved in anhydrous THF (1 mL). The solution was purged with N_{2}, n-butyllithium (1.6 M in hexane, 0.31 mL) was added, and the mixture was stirred for 30 min . After addition of p-nitrobenzoyl chloride ($74 \mathrm{mg}, 0.4 \mathrm{mmol}$) in THF (0.5 mL), the reaction mixture was refluxed for 1 h and then allowed to cool to room temperature. Ether was added, the solution was washed

[^14]with aqueous NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. HPLC (silica gel, hexane-ether (3:2)) of the residue afforded 70 mg (69%) of $67, \mathrm{mp} 104^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}$, $3 \mathrm{H}), 1.6-2.4(\mathrm{~m}, 8 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 8.15(\mathrm{~m}, 4 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4}: \mathrm{C}, 66.42 ; \mathrm{H}, 6.62 ; \mathrm{N}, 4.84$. Found: C, $66.27 ; \mathrm{H}, 6.81$; N, 4.89 .

The p-nitrobenzoate 67 ($20 \mathrm{mg}, 0.069 \mathrm{mmol}$), dioxane-water ($7: 3$, 2 mL), and 2,6 -dimethylpyridine ($15 \mathrm{mg}, 0.14 \mathrm{mmol}$) were heated at $80^{\circ} \mathrm{C}$ for 3 d . After conventional workup, GC ($29 \mathrm{M} \mathrm{OV1}, 90^{\circ} \mathrm{C}$) showed 5.5% of $\mathbf{6 9}$ and 94.5% of 1,7 -dimethylbicyclo[2.2.1]heptan7 -ol (68). ${ }^{32}$

Methanolyses of 1,endo-2-Dimethylbicyclo[3.2.0]heptan-exo-2-ol (69) and 1,exo-2-Dimethylbicyclo[3.2.0]heptan-endo-2-ol (70). In methanolic $1.75 \mathrm{NH}_{2} \mathrm{SO}_{4}$ at $25^{\circ} \mathrm{C}, 69^{32}$ afforded 1,7 -dimethylbicyclo-[2.2.1]heptan-7-ol (68) ${ }^{32}$ and 7-methoxy-1,7-dimethylbicyclo[2.2.1]heptane (71) in a $92: 8$ ratio with $k \approx 3.2 \times 10^{-4} \mathrm{~s}^{-1}$ (Table 15S). Under these conditions, exo-2-methoxy-1, endo-2-dimethylbicyclo[3.2.0]heptane (72) rearranged to give 71 at a rate ($k \approx 6.1 \times 10^{-4} \mathrm{~s}^{-1}$) faster than that of 69 (Table 16S). Methylation of the appropriate alcohols with $\mathrm{NaH}-\mathrm{MeI}$ (THF, reflux) provided samples of 71 (${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.85(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.10-2.05(\mathrm{~m}, 9 \mathrm{H}), 3.21(\mathrm{~s}$, $3 \mathrm{H})$) and $72\left({ }^{(} \mathrm{H}\right.$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.98(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.1-$ 2.4 (m, 9 H), 3.08 ($\mathrm{s}, 3 \mathrm{H}$)).

Addition of methyllithium to 1-methylbicyclo[3.2.0]heptan-2-one ${ }^{32}$ afforded 89% of 1,exo-2-dimethylbicyclo[3.2.0]heptan-endo-2-ol (70). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 1 \mathrm{H}), 1.2-$ $2.5(\mathrm{~m}, 9 \mathrm{H})$. When 70 was treated with $1.75 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ at $50^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, 3.5 \%$ of $\mathbf{6 8}, 31.5 \%$ of $\mathbf{7 1}$, and 65% of unreacted 70 were obtained.

Acidolysis of $\left[{ }^{18} \mathrm{O}\right]$ Tricyclo $\left[4.3 .1 .0^{3,8}\right]$ decan-exo-4-ol ($76-{ }^{18} \mathrm{OH}$). Tricyclo[4.3.1. $0^{3,8}$]decan- 4 -one ${ }^{54}$ ($900 \mathrm{mg}, 6 \mathrm{mmol}$), anhydrous THF (3 mL), ${ }^{18} \mathrm{OH}_{2}\left(2 \mathrm{~mL}\right.$, ca. $55 \%{ }^{18} \mathrm{O}$), and concentrated $\mathrm{HCl}(1 \mu \mathrm{~L})$ were heated at $80^{\circ} \mathrm{C}$ for 12 h . After cooling to room temperature, the mixture was extracted with pentane. The extracts were dried (MgSO_{4}) and concentrated to give $850 \mathrm{mg}(94 \%)$ of crude [$\left.{ }^{[8} \mathrm{O}\right]$ tricyclo[4.3.1.0 $\left.0^{3.8}\right]$ -decan-4-one. IR $\left(\mathrm{CDCl}_{3}\right): 1721(\mathrm{C}=\mathrm{O})$ and $1686\left(\mathrm{C}={ }^{18} \mathrm{O}\right) \mathrm{cm}^{-1} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 216.901\left(\mathrm{C}={ }^{18} \mathrm{O}\right)$ and $216.953(\mathrm{C}=\mathrm{O})$.

Reduction of the ketone with LiAlH_{4}, according to the published procedure, ${ }^{35 a}$ afforded 34% of $76 \cdot{ }^{18} \mathrm{OH}$ and 58% of the endo isomer which were separated by chromatography (silica gel, hexane-ether (3: 2)). The ${ }^{13} \mathrm{C}$ NMR spectrum of $76-{ }^{-18} \mathrm{OH}$ was not sufficiently resolved for a precise ${ }^{18} \mathrm{O}$ analysis. Therefore, we prepared the 3,5 -dinitrobenzoate ${ }^{35 \mathrm{a}}\left(85 \%, \mathrm{mp} 142{ }^{\circ} \mathrm{C}\right.$), whose ${ }^{13} \mathrm{C}$ NMR spectrum showed excellent resolution of the peaks at $\delta 76.749\left(\mathrm{C}-4-^{18} \mathrm{O}, 54.5 \%\right)$ and 76.793 (C-4- ${ }^{16} \mathrm{O}, 45.4 \%$).

The rearrangement of $76-{ }^{18} \mathrm{OH}(50 \mathrm{mg}, 0.33 \mathrm{mmol}$) was carried out in a 1.75 M solution of HClO_{4} in dioxane-water $\left(3: 2,60^{\circ} \mathrm{C}, 2.5 \mathrm{~h}\right)$. The [${ }^{[8} \mathrm{O}$]tricyclo[3.3.1.1 ${ }^{3,7}$]decan-2-ol (77- ${ }^{18} \mathrm{OH}$) thus produced was converted to the p-toluenesulfinate for an improved analysis. The residue obtained by conventional workup of the acidolysis mixture (see [$\left.{ }^{18} \mathrm{O}\right] 16$) was dissolved in pyridine (1 mL), and p-toluenesulfinyl chloride ($63 \mathrm{mg}, 0.36 \mathrm{mmol}$) was added. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 16 h and then partitioned between ether and 10% HCl . The organic phase was washed with aqueous NaHCO_{3}, dried (MgSO_{4}), and concentrated in vacuo. The residue was purified by HPLC (Lichrosphere $60-5$, hexane-ether ($9: 1$)) to give 76 mg (79%) of $77 .{ }^{18} \mathrm{OSO}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}, \mathrm{mp} 96{ }^{\circ} \mathrm{C} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.41\left(\mathrm{CH}_{3}\right)$, $26.73(\mathrm{CH}), 27.03(\mathrm{CH}), 31.17\left(\mathrm{CH}_{2}\right), 31.22\left(\mathrm{CH}_{2}\right), 33.44(\mathrm{CH}), 33.61$ $(\mathrm{CH}), 36.37\left(\mathrm{CH}_{2}\right), 36.48\left(\mathrm{CH}_{2}\right), 37.19\left(\mathrm{CH}_{2}\right), 81.885\left(\mathrm{C}-2-^{18} \mathrm{O}, 39.2 \%\right)$, 81.925 (C-2- ${ }^{16} \mathrm{O}, 60.8 \%$), $124.91(\mathrm{CH}), 129.46$ (CH), 142.18 (C), 142.91 (C). The unlabeled 2 -adamantyl p-toluenesulfinate has been reported, $\mathrm{mp} 95-96^{\circ} \mathrm{C} .{ }^{55}$ An analogous rearrangement of $76-{ }^{18} \mathrm{OH}$ with 1.75 $\mathrm{M} \mathrm{HClO}_{4}$ in acetone-water ($3: 2,60^{\circ} \mathrm{C}, 30 \mathrm{~min}$) gave $77 \cdot \mathrm{OH}$ containing $40.8 \%{ }^{18} \mathrm{O}$.

Acidolyses of Tricyclo[4.3.1.0 ${ }^{3,8}$]decan-exo-4-01 (76-OH), exo-4Methoxytricyclo[4.3.1.0 ${ }^{38}$]decane (76-OMe), and exo-4-Ethoxytricyclo[4.3.1.0 ${ }^{3,8}$]decane ($\mathbf{7 6 - O E t}$). Methylation of $\mathbf{7 6 - O H}$ ($304 \mathrm{mg}, 2 \mathrm{mmol}$) with sodium hydride ($144 \mathrm{mg}, 6 \mathrm{mmol}$) and methyl iodide ($852 \mathrm{mg}, 6$ mmol) in THF (8 mL) at $45^{\circ} \mathrm{C}$ for 2 h afforded $160 \mathrm{mg}(48 \%)$ of 76-OMe. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.24-1.36(\mathrm{~m}, 3 \mathrm{H}), 1.43(\mathrm{dd}, J=$

[^15]10.9 and $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.60 (m, 1 H), $1.66-1.97$ (m, $6 . \mathrm{H}$), 2.09 (m, 1 $\mathrm{H}), 2.15(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{dd}$, $J=6.5$ and $3.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 27.44(\mathrm{CH}), 32.14$ $\left(\mathrm{CH}_{2}\right), 32.26(\mathrm{CH}), 34.67\left(\mathrm{CH}_{2}\right), 35.22\left(\mathrm{CH}_{2}\right), 35.42(\mathrm{CH}), 37.60(\mathrm{CH})$, $39.52\left(\mathrm{CH}_{2}\right), 42.39\left(\mathrm{CH}_{2}\right), 55.90\left(\mathrm{CH}_{3}\right), 79.67(\mathrm{CH})$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 79.46 ; \mathrm{H}, 10.91$. Found: C, 79.37; H, 10.83. Analogous ethylation of 76-OH with $\mathrm{NaH}-\mathrm{EtI}\left(85{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}\right)$ gave $210 \mathrm{mg}(58 \%)$ of 76-OEt. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.17(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.36$ $(\mathrm{m}, 3 \mathrm{H}), 1.43(\mathrm{dd}, J=11.0$ and $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}), 1.65-$ $1.77(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 2.17$ $(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 15.75\left(\mathrm{CH}_{3}\right), 27.48(\mathrm{CH}), 32.18\left(\mathrm{CH}_{2}\right), 32.38(\mathrm{CH})$, $35.28\left(\mathrm{CH}_{2}\right), 35.33\left(\mathrm{CH}_{2}\right), 35.44(\mathrm{CH}), 37.95(\mathrm{CH}), 39.60\left(\mathrm{CH}_{2}\right), 42.40$ $\left(\mathrm{CH}_{2}\right), 63.16\left(\mathrm{CH}_{2}\right), 77.42(\mathrm{CH})$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 79.94$; H, 11.18. Found: C, 79.83; H, 11.17.

Acidolyses of 76-OH in methanol (Table 17S), 76-OEt in methanol (Table 18S), and 76-OMe in ethanol (Table 19S), as described above (see 16), gave virtually constant ratios of $77-\mathrm{OH}: 77-\mathrm{OMe}^{36}$ and 77-OMe:77-OEt, ${ }^{57}$ respectively (GC: $40 \mathrm{M} \mathrm{OV} 17,130^{\circ} \mathrm{C}$).

Methanolyses of endo-4-Methyltricyclo[4.3.1.0 ${ }^{3,8}$]decan-exo-4-ol (79) and exo-4-Methyltrícyclo[4.3.1.0 ${ }^{3,8}$]decan-endo-4-ol (80). ${ }^{35.39}$

[^16]Methanolyses were performed at $25^{\circ} \mathrm{C}$, using $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ for 79 (Table 20S) and $1.75 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ for 80 (Table 21S). GC: 58.5 M Edenol, $140^{\circ} \mathrm{C}$. Methylation ($\mathrm{NaH}-\mathrm{CH}_{3} \mathrm{I}, \mathrm{THF}, 45^{\circ} \mathrm{C}, 2 \mathrm{~h}$) of the appropriate alcohols afforded endo-4-methoxy-exo-4-methyltricyclo[4.3.1.0 $0^{3.8}$ decane (82). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.1-2.3$ ($\mathrm{m}, 14 \mathrm{H}$), 3.17 (s, 3 H), exo-4-methoxy-endo-4-methyltricyclo[4.3.1.0 ${ }^{3.8}$]decane (83). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.1-2.4$ $(\mathrm{m}, 14 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H})$, and 2-methoxy-1-methyltricyclo[3.3.1.1 ${ }^{3.7}$]decane (84). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.81(\mathrm{~s}, 3 \mathrm{H}), 0.95-2.2(\mathrm{~m}, 13 \mathrm{H})$, 2.88 (br.s, 1 H), $3.30(\mathrm{~s}, 3 \mathrm{H})$. The methanolysis of 83 in methanolic $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ (Table 22 S) provided rate constants which were used to simulate the product distributions recorded in Tables 20S and 21S (see Scheme 12).

Acknowledgment. Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged.

Supporting Information Available: Tables 5-22, reporting product distributions of acidolyses and reference reactions (12 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, can be ordered from the ACS, and can be downloaded from the Internet; see any current masthead page for ordering information and Internet access instructions.
JA9523770

[^0]: ${ }^{8}$ Abstract published in Advance ACS Abstracts, December 1, 1995.
 (1) Winstein, S.; Clippinger, E.; Fainberg, A. H.; Heck, R.; Robinson, G. C. J. Am. Chem. Soc. 1956, 78, 328.
 (2) For reviews, see: (a) Harris, J. M. Prog. Phys. Org. Chem. 1974, 1I, 89. (b) Raber, D. J.; Harris, J. M.; Schleyer, P. v. R. In Ions and lon Pairs in Organic Chemistry; Szwarc, M., Ed.; Wiley: New York, 1974; Vol. 2, p 247. (c) Bentley, T. W.; Schleyer, P. v. R. Adv. Phys. Org. Chem. 1977, 14, 1.

[^1]: (3) Goering, H. L.; Dilgren, R. E. J. Am. Chem. Soc. 1960, 82, 5744.
 (4) Goering, H. L.; Josephson, R. R. J. Am. Chem. Soc. 1962, 84, 2779.
 (5) Thibblin, A. J. Chem. Soc., Perkin Trans. 2 1987, 1629.

[^2]: (6) Thibblin, A. J. Chem. Soc., Chem. Commun. 1990, 697.
 (7) (a) Grunwald, E.; Heller, A.; Klein, S. F. J. Chem. Soc. 1957, 2604. (b) Merritt, M. V.; Bell, S. J.; Cheon, H.-J.; Darlington, J. A.; Dugger, T. L.; Elliott, N. B.; Fairbrother, G. L.; Melendez, C. S.; Smith, E. V.; Schwartz, P. L. J. Am. Chem. Soc. 1990, 112, 3560.
 (8) Merritt, M. V.; Anderson, D. B.: Basu, K. A.; Chang, I.-W.; Cheon, H.-J.; Mukundan, N. E.; Flannery, C. A.; Kim, A. Y.; Vaishampayan, A.; Yens, D. A. J. Am. Chem. Soc. 1994, 116, 5551.
 (9) Thibblin, A. J. Phys. Org. Chem. 1993, 6, 287.
 (10) Herlihy, K. P. Aust. J. Chem. 1982, 35, 2221.
 (11) Thibblin, A.; Sidhu, H. J. Phys. Org. Chem. 1993, 6, 374. See also: Thibblin, A. Chem. Soc. Rev. 1993, 22, 427.
 (12) For reviews, see: (a) Bowen, R. D.; Williams, D. H.; Schwarz, H. Angew. Chem., Int. Ed. Engl. 1979, 18, 451. (b) Bowen, R. D. Acc. Chem. Res. 1991, 24, 364. (c) McAdoo, D. J.; Morton, T. H. Acc. Chem. Res. 1993, 26, 297.
 (13) (a) Kirmse, W.; Siegfried, R. J. Am. Chem. Soc. 1968, 90, 6504. (b) Kirmse, W.; Siegfried, R.; Wroblowsky, H.-J. Chem. Ber. 1983, 116, 1880. (c) Kirmse, W. Acc. Chem. Res. 1986, 19, 36.

[^3]: (14) Sieber, S.; Schleyer, P. v. R.; Vancik, H.; Mesic, M.; Sunko, D. E. Angew. Chem. 1993, I05, 1673; Angew. Chem., Int. Ed. Engl. 1993, 32, 1604.

[^4]: (15) Indyk, H.; Whittaker, D. J. Chem. Soc., Perkin Trans. 2 1974, 646.
 (16) Müller, P.; Perlberger, J.-C. J. Am. Chem. Soc. 1975, 97, 6862; 1976, 98, 8407 .
 (17) Colter, A.; Friedrich, E. C.; Holness, N. J.; Winstein, S. J. Am. Chem. Soc. 1965, 87, 378.
 (18) Kirmse, W.; Brandt, S. Chem. Ber. 1984, 117, 2510.
 (19) Schleyer, P. v. R.; Donaldson, M. M.; Watts, W. E. J. Am. Chem. Soc. 1965, 87, 375.
 (20) Saunders, M.; Chandrasekhar, J.; Schleyer, P. v. R. In Rearrangements in Ground and Excited States; de Mayo, P., Ed.; Academic Press: New York, 1980; Vol. I, pp 34-41.

[^5]: (21) Reviews: (a) Grob, C. A.; Schiess, P. W. Angew. Chem. 1967, 79, 1; Angew. Chem., Int. Ed. Engl. 1967, 6, 1. (b) Grob, C. A. Angew. Chem. 1969, 81, 543; Angew. Chem., Int. Ed. Engl. 1969, 8, 535. (c) Becker, K. B., Grob, C. A. In The Chemistry of Double-Bonded Functional Groups; Patai, S., Ed.; Wiley: New York, 1977; Part 2, Chapter 8.
 (22) Kirmse, W.; Zander, K. Angew. Chem. 1988, 100, 1596; Angew. Chem., Int. Ed. Engl. 1988, 27, 1538.
 (23) Banert, K.; Kirmse, W.; Wroblowsky, H.-J. Chem. Ber. 1983, 116, 2474.
 (24) (a) Banert, K.; Kirmse, W.; Wroblowsky, H.-J. Chem. Ber. 1983, 116, 3591. (b) Herrmann, R. Ph.D. Thesis, Ruhr-Universität Bochum, 1993.

[^6]: (25) (a) Olah, G. A.; Prakash, G. K. S.; Saunders, M. Acc. Chem. Res. 1983, 16, 440. (b) Olah, G. A.; Prakash, G. K. S.; Williams, R. E.; Fields, L. D.; Wade, K. Hypercarbon Chemistry; Wiley: New York, 1987.

[^7]: (26) Engler, E. M.; Andose, J. D.; Schleyer, P. v. R. J. Am. Chem. Soc. 1973, 95, 8005.
 (27) Takeuchi, K.; Oshika, T.; Koga, Y. J. Chem. Soc. Jpn. 1965, 38, 1318.
 (28) Cristol, S. J.; Seifert, W. K.; Johnson, D. W.; Jurale, J. B. J. Am. Chem. Soc. 1962, 84, 3918.

[^8]: (29) (a) Adam, W.; Carballeira, N.; Peters, E. M.; Peters, K.; y. Schnering, H. G. J. Am. Chem. Soc. 1983. 105, 5132. (b) Altmann-Schaffner, E.; Grob, C. A. Helv. Chim. Acta 1987, 70, 43.
 (30) Kirmse, W.; Landscheidt, H.; Schleich, A. J. Phys. Org. Chem. 1992, 5, 19.
 (31) (a) Winstein, S.; Gadient, F.; Stafford, E. T.; Klinedinst, P. E. J Am. Chem. Soc. 1958, 80, 5895. (b) Svensson, T. Chem. Scripta 1974, 5, 20.
 (32) Kirmse, W., Streu, J. Synthesis 1983, 994.
 (33) Kirmse, W.; Streu, J. J. Org. Chem. 1985, 50, 4187

[^9]: (34) For a review, see: Sorensen, T. S.; Whitworth, S. M. In Cage Hydrocarbons; Olah, G. A., Ed.; Wiley: New York, 1990; pp 86-91.
 (35) (a) Lenoir, D.; Hall, R. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1974, 96, 2138. (b) Lenoir, D.; Raber, D. J.; Schleyer, P. v. R. J. Am. Chem. Soc. 1974, 96, 2149.
 (36) (a) Nordlander, J. E.; Haky, J. E.; Landino, J. P. J. Am. Chem. Soc. 1980, 102, 7487. (b) Nordlander, J. E.; Haky, J. E. J. Am. Chem. Soc. 1981, 103, 1518.
 (37) (a) Dutler, R.; Rauk, A.; Sorensen, T. S.; Whitworth, S. M. J. Am. Chem. Soc. 1989, III, 9024. (b) Dutler, R.; Rauk, A.; Whitworth, S. M.; Sorensen, T. S. J. Am. Chem. Soc. 1991, M3, 411.
 (38) Herpers, E.; Kirmse, W, J. Chem. Soc., Chem. Commun. 1993, 160.
 (39) Kovacevic, D.; Goricnik, B.; Majerski, Z. J. Org. Chem. 1978, 43, 4008.

[^10]: (40) (a) Tanida, H.; Hata, Y.; Ikegami, S.; Ishitobi, H. J. Am. Chem. Soc. $\mathbf{1 9 6 7}, 89,2928$. (b) Lustgarten, R. K.; Lhomme, J.; Winstein, S. J. Org. Chem. 1972, 37, 1075. (c) Gassman, P. G.; Pascone, J. M. J. Am. Chem. Soc. 1973, 95, 7801. (d) Fisher, R. D.; Seib, R. C.; Shiner, V. J., Jr.; Szele, I.; Tomic, M.; Sunko, D. E. J. Am. Chem. Soc. 1975, 97, 2408.
 (41) (a) Richard, J. P. J. Am. Chem. Soc. 1989, III, 1455. (b) Richard, J. P.; Amyes, T. L.; Bei, L.; Stubblefield, V. J. Am. Chem. Soc. 1990, 112 , 9513. (c) Amyes, T. L.; Richard, J. P. J. Am. Chem. Soc. 1991, 113, 1867. (d) Amyes, T. L.; Richard, J. P. J. Chem. Soc., Chem. Commun. 1991, 200.

[^11]: (42) (a) McClelland, R. A.; Kanagasabapathy, V. M.; Banait, N. S.; Steenken, S. J. Am. Chem. Soc. 1989, 111, 3966. (b) Bartl, J.; Steenken, S.; Mayr, H. J. Am. Chem. Soc. 1991, $113,7710$.
 (43) Hertz, H. G. In Water; Franks, F., Ed.; Plenum Press: New York, 1973; Vol. 3, Chapter 7.

[^12]: (44) (a) Musso, H.; Naumann, K.; Grychtol, K. Chem. Ber. 1967, 100, 3614. (b) Grychtol, K.; Musso, H.; Oth, J. F. M. Chem. Ber. 1972, 105, 1798. (c) Ohuchida, S.; Hamanaka, N.; Hayashi, M. Tetrahedron Lett. 1975, 3661. (d) Nicolaou, K. C.; Magolda, R. L.; Claremon. D. A. J. Am. Chem. Soc. 1980, 102, 1404.
 (45) Siegfried, R. Chem. Ber. 1974, 107, 1472.

[^13]: (46) Jensen, F. R.; Miller, J. J.; Cristol, S. J.; Beckley, R. S. J. Org. Chem. 1972, 37, 4341.
 (47) Winstein, S.; Holness, N. J. J. Am. Chem. Soc. 1955, 77, 3054.
 (48) Coxon, J. M.; Garland, R. P.; Hartshorn, M. P. Aust. J. Chem. 1972, 25, 947.
 (49) Coxon, J. M.; Hydes, G. J.; Steel, P. J. J. Chem. Soc., Perkin Trans. 2 1984, 1351.

[^14]: (50) Kirmse, W.; Siegfried, R. Chem. Ber. 1972, 105, 2754.
 (51) Beckmann, S.; Mezger, R. Chem. Ber. 1956, 89, 2783.
 (52) Brown, H. C.; Kawakami, J. H.; Ikegami, S. J. Am. Chem. Soc. 1967, 89, 1525.
 (53) Cristol, S. J.; Seifert, W. K.; Soloway, S. B. J. Am. Chem. Soc. 1960, 82, 2351.

[^15]: (54) Majerski, Z.; Hamersak, Z. Org. Synth. 1980, 59, 147.
 (55) Lee, C.; Field, L. Phosphorus, Sulfur Silicon Relat. Elem. 1989, 45, 35.

[^16]: (56) (a) Duddeck, H.; Hollowood, F.; Karim, A.; McKervey, M. A. J. Chem. Soc., Perkin Trans. 2 1979, 360. (b) Kropp, P. J.; Adkins, R. L. J. Am. Chem. Soc. 1991, 113, 2709.
 (57) Kropp, P. J.; Gibson, J. R.; Snyder, J. J.; Poindexter, G. S. Tetrahedron Lett. 1978, 207.

